General Guide

Large Loss in Training

Which One?

如果是 Model Bias,那么就换成更大、更有弹性的 Model,如果是 Optimization 的问题,那么… When Gradient is Small.

Small Loss in Training

Large Loss in Test: Overfitting

为什么更弹性的模型更容易过拟合?

Solution for Overfitting

  1. More Training Data / Data Augmentation
  2. Constrain Model 不要过度限制!否则会回到 Model Bias

How to Select Model

用 Cross Validation 挑选模型,不要过度关注 public Test,防止过拟合在测试上

Mismatch

Loss Function May Affect

Training Tips

Batch and Momentum

Adaptive Learning Rate

Summary

现在最常用的 Optimizer 是 Adam,但是关于衰减需要自己考虑、指定,Adam 并不包括衰减。