什么是机器学习

机器学习的任务

An Example

Concepts:

  • Model
  • Feature
  • Weight
  • Bias
  • Label
  • Error Surface
  • Learning Rate
  • Hyperparameter

2. (Loss 越大,参数越糟糕) 3.

Summary:

  • Linear Model

Improvement

Concept:

  • Model bias
  • Activation Function
    • (Hard) Sigmoid
    • ReLU
  • Epoch
  • Update

Constant + (Sigmoid)Hard Sigmoid Piecewise Function Continuous Curve

Sigmoid 调整

New Model

矩阵表示: 1. 2. 3. Batch and Momentum

More Changes

  • Add Layers 此即 神经网络深度学习 Deep = Many hidden layers

隐藏层 = 线性变换 + 激活函数

Overfitting(过拟合)

为什么要把学习变深,而不是变“胖”,只加 ReLU 之类的数量,而不加层数? —— 后续内容

Summary